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Abstract
Objective To identify candidate neuroimaging and genetic biomarkers for Alzheimer’s disease (AD) and other brain dis-
orders, especially for little-investigated brain diseases, we advocate a data-driven approach which incorporates an adaptive 
classifier ensemble model acquired by integrating Convolutional Neural Network (CNN) and Ensemble Learning (EL) with 
Genetic Algorithm (GA), i.e., the CNN-EL-GA method, into Genome-Wide Association Studies (GWAS).
Methods Above all, a large number of CNN models as base classifiers were trained using coronal, sagittal, or transverse 
magnetic resonance imaging slices, respectively, and the CNN models with strong discriminability were then selected to 
build a single classifier ensemble with the GA for classifying AD, with the help of the CNN-EL-GA method. While the 
acquired classifier ensemble exhibited the highest generalization capability, the points of intersection were determined with 
the most discriminative coronal, sagittal, and transverse slices. Finally, we conducted GWAS on the genotype data and the 
phenotypes, i.e., the gray matter volumes of the top ten most discriminative brain regions, which contained the ten most 
points of intersection.
Results Six genes of PCDH11X/Y, TPTE2, LOC107985902, MUC16 and LINC01621 as well as Single-Nucleotide Poly-
morphisms, e.g., rs36088804, rs34640393, rs2451078, rs10496214, rs17016520, rs2591597, rs9352767 and rs5941380, 
were identified.
Conclusion This approach overcomes the limitations associated with the impact of subjective factors and dependence on 
prior knowledge while adaptively achieving more robust and effective candidate biomarkers in a data-driven way.
Significance The approach is promising to facilitate discovering effective candidate genetic biomarkers for brain disorders, 
as well as to help improve the effectiveness of identified candidate neuroimaging biomarkers for brain diseases.

Keywords Alzheimer’s disease · Neuroimaging · Deep learning · Ensemble learning · Genetic algorithm · Single-
nucleotide polymorphism · Genome-wide association studies

1 Introduction

Alzheimer’s disease (AD) involves progressive neurodegen-
eration, causing cognitive decline, and the loss of memory 
and other brain functions. The patients will suffer from 
amnesia, low mobility, language disability, and other adverse 
manifestations [1, 2] with the deterioration of the disease. 
Mild Cognitive Impairment (MCI) is a transition stage 
between the natural cognitive deterioration of normal aging 
and the more severe deterioration of AD. Existing studies 
[3] have shown that patients with MCI are further catego-
rized into those who will convert to AD (MCIc) and those 
who will not convert to AD (MCInc) in a short period of 
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time, compared with age-matched Healthy Cognition (HC). 
Therefore, how to accurately determine the disease stage of 
a patient has become the research focus in screening AD.

Structural Magnetic Resonance Imaging (sMRI) can be 
noninvasively utilized to examine anatomical and patho-
logical changes in the brain. Especially, the atrophy of hip-
pocampus and entorhinal cortex captured by it can reflect 
the disease stage to a certain extent and help predict the 
progression of MCI to AD [4]. Thus, MRI is widely adopted 
in the study of AD diagnosis [5–12]. The results obtained 
by traditional feature extraction methods for capturing MRI 
structural changes largely depended on the manual skills 
[13], which required a large amount of prior knowledge. In 
contrast, as a data-driven machine-learning method, deep 
learning enables the acquired model to be more flexible, 
universal, and objective since training a deep-learning model 
is an automated learning process with eliminating the need 
of manually extracting features.

In recent years, Convolution Neural Networks (CNNs) 
[14] have shown their superiority in various fields. Excellent 
image feature extraction capabilities have also made CNNs 
very popular in the field of medical image analysis [15, 16]. 
A deep three-dimensional (3D) CNN method was used to 
learn the discriminative features of MRI to predict AD [17]. 
Since a large amount of training data are required during 
training CNN, the CNN model pre-trained on the ImageNet 
dataset was employed to extract the features of MRI using 
transfer learning [18]; a content-based image retrieval sys-
tem using 3D capsule network, 3D convolutional neural 
network and pre-trained 3D autoencoder technology were 
advocated for early detection of AD [19].

At the same time, Ensemble Learning (EL) has exhib-
ited the benefits of performance and robustness by integrat-
ing multiple learning systems. More and more studies have 
exhibited that deep learning combined with EL techniques 
has given promising results by modeling MRI data with high 
accuracy for early diagnosis of AD [20]. An ensemble of 
3D densely connected convolutional networks (3DDenseN-
ets) has been proposed for classifying AD and MCI using 
T1-weighted MRIs [21]. Plus, in [22], Pan et al. decom-
posed a three-dimensional MRI into two-dimensional slices 
along the coronal, sagittal and transverse planes, and trained 
a based classifier (i.e., a CNN model here) corresponding 
to a two-dimensional slice. The five base classifiers with 
the best generalization performance on the validation data-
set were chosen among the coronal, sagittal and transverse 
slice-based base classifiers, respectively. Finally, a classifier 
ensemble based on three-axis slices was built with the three 

classifier ensembles based on coronal, sagittal and trans-
verse slices, respectively, following a simple majority vot-
ing scheme. Thus, based on these, the discriminative brain 
regions were discerned. This method effectively improved 
the diagnosis of AD, but the number of the chosen best base 
classifiers, i.e., 15, was manually determined. To solve this 
problem, Genetic Algorithm (GA) was introduced to adap-
tively select the best base classifiers for building the final 
classifier ensemble with the highest generalization capability 
in a data-driven manner in this study. In addition, although 
the above methods captured the salient features of MRI to 
some degree with CNNs, these features were only used to 
detect diseases or determine relevant brain regions, but 
failed to perform correlation analysis between related brain 
regions and genes to help discover the candidate genetic 
biomarkers.

Image genetics is an active research field emerging with 
the accumulation of high-throughput omics data and multi-
modal imaging data. The main purpose is to acquire effec-
tive information from multimodal imaging data and omics 
data, such as Single-Nucleotide Polymorphism (SNP) and 
proteomics data [23]. Some researchers have performed 
Genome-Wide Association Studies (GWAS) between AD 
locus and MRI biomarkers [24]. Tan et al. conducted GWAS 
experiments on related loci with late-onset AD in Han popu-
lation in northern China [25]. Studies have shown that AD 
is affected by genetic factors, and the discovery of genetic 
biomarkers for AD is of important clinical significance.

In this study, above all, we proposed an adaptive clas-
sifier ensemble model by combining CNN and EL with 
Genetic Algorithm (GA), i.e., the CNN-EL-GA approach, 
to automatically extract features that can be employed to 
distinguish subjects with clinical diagnosis of AD or MCI 
from HC, and to distinguish the subjects with MCIc from 
those with MCInc, using brain MRI data. For each of three 
binary classification tasks in this study, the five-fold cross-
validation procedure was rigorously observed to avoid the 
potential data leakage. First, a 3D MRI image was pre-pro-
cessed and the base classifiers were trained in the same way 
as that in [22]. To prevent introducing subjective factors in 
the process of selecting the trained base classifiers to build 
the classifier ensemble, we adopted genetic algorithm (GA) 
to optimize the selection process in a data-driven manner. 
In this way, the optimal combination of base classifiers was 
ultimately determined to build a refined classifier ensemble 
with the help of GA. Subsequently, the intersection points 
and the most discriminative brain regions were decided in 
the same way as that described in [22] while the acquired 
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ensemble model exhibited the highest generalization capa-
bility. Finally, gray matter volumes of the top ten most dis-
criminative brain regions, as phenotypes, together with the 
genotype were employed to conduct GWAS experiments to 
discover the candidate genetic biomarkers for AD.

2  Materials and Methods

2.1  Participants and datasets

Data used in the study were obtained from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) database. The 
ADNI was launched in 2003 as a public–private partnership, 
led by Principal Investigator, Michael W. Weiner, MD. The 
primary goal of ADNI has been to test whether serial MRI, 
positron emission tomography (PET), other biological mark-
ers, and clinical and neuropsychological assessment can be 
combined to measure the progression of MCI and early AD.

Here, among the 509 subjects involved in [26], the 458 
subjects (AD = 122, MCIc = 70, MCInc = 118 and HC = 148) 
with MRI and SNP data available for download were 
selected. Their MRI and SNP data were retrieved from the 
ADNI database to train the base classifiers and to examine 
the performance of the final classifier ensemble. Since there 
was a need for additional MRI data to acquire the optimal 
combination of base classifiers, we downloaded the MRI 
data of additional 278 subjects (AD = 100, MCIc = 39, 
MCInc = 39, and HC = 100) in the ADNI database to act 
as a validation dataset. There was no overlapping between 
the 458 subjects and the 278 subjects. Tables 1 and 2 show 
the subjects’ gender, age, weight, Clinical Dementia Rating 
(CDR), Geriatric Depression Scale (GDS) and Mini-Mental 
State Examination (MMSE) scale.

2.2  Methods

The pipeline of the proposed approach incorporating the 
CNN-EL-GA method into GWAS for discovering candidate 
genetic biomarkers for AD is shown in Fig. 1. It is divided 
into four main components: (1) preprocessing image and 
gene data; (2) training base classifiers; (3) optimizing the 
combination of base classifiers and ensembling; (4) discov-
ering the candidate genetic biomarkers with GWAS, i.e., 
identifying the brain regions with stronger discriminability 
and calculating their gray matter volumes to discover statis-
tically significant SNPs associated with the phenotype for 
AD with GWAS.

2.2.1  Image Preprocessing

The CAT12 toolkit (https:// www. neuro. uni- jena. de/ cat/) 
with default value setting was employed to preprocess 
the T1-weighted MRI data in nii format retrieved from 
ADNI database. The involved steps included non-brain 
tissue removal, registration to MNI space, image smooth 
with SPM12 (https:// www. fil. ion. ucl. ac. uk/ spm/ softw are/ 
spm12/), normalization, slicing and resizing. The dimension 
of each smoothed image was 121 × 145 × 121. After slicing, 
resizing and selecting, a total of 123 slices (of 145 × 145) 
from a subject’s 3D MRI image, i.e., 40 sagittal slices, 50 
coronal slices, and 33 transverse slices, were obtained. The 
image preprocessing steps are shown in Fig. 2. For further 
details, please refer to [22].

2.2.2  Gene Data Preprocessing

The ADNI database provides not only medical imaging data, 
such as MRI and PET, but also a large amount of geno-
type data, e.g., 620,901 SNPs. The genotypic data of the 
458 subjects described in Table 1 were downloaded and 
saved in three files with suffixes of.BIM,.FAM and.BED, 

Table 1  Information on the 
subjects in the training and 
testing datasets

Participant group Male/female Age/year Weight/kg MMSE CDR GDS

AD (N = 122) 60/62 76.00 ± 7.10 70.92 ± 13.33 23.21 ± 2.04 0.76 ± 0.25 1.59 ± 1.30
MCIc (N = 70) 41/29 74.93 ± 7.29 72.45 ± 14.42 26.51 ± 1.91 0.50 ± 0.00 1.44 ± 1.16
MCInc (N = 118) 75/43 74.35 ± 6.99 76.21 ± 13.38 27.16 ± 1.72 0.50 ± 0.00 1.56 ± 1.42
HC (N = 148) 73/75 76.00 ± 5.26 74.42 ± 13.35 29.18 ± 0.96 0.00 ± 0.00 0.81 ± 1.08

Table 2  Information on the 
subjects in the validation dataset

Participant group Male/Female Age/year Weight/kg MMSE CDR GDS

AD (N = 100) 60/40 74.24 ± 7.82 76.04 ± 15.83 23.84 ± 2.08 0.82 ± 0.24 1.81 ± 1.56
MCIc (N = 39) 23/16 74.15 ± 7.10 73.59 ± 14.14 27.05 ± 1.59 0.50 ± 0.00 1.92 ± 1.35
MCInc (N = 39) 29/10 76.02 ± 7.00 78.35 ± 12.99 27.56 ± 1.83 0.50 ± 0.00 1.79 ± 1.45
HC (N = 100) 45/55 73.36 ± 5.70 76.16 ± 15.66 28.92 ± 1.25 0.00 ± 0.00 0.83 ± 1.34

https://www.neuro.uni-jena.de/cat/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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i.e., the standard PLINK [27] files. The phenotypic data in 
the GWAS experiments were the morphological parameters 
(gray matter volume values, here) of brain regions with 
strong discriminability in classifying AD, which were cal-
culated by FreeSurfer-v6.0.0 [28] (https:// surfer. nmr. mgh. 
harva rd. edu/ pub/ dist/ frees urfer/6. 0.0/ frees urfer- Linux cento 
s6_ x86- 64- stable- pub- v6.0. 0. tar. gz) after the”Brainetome 
Atlas [29]” was imported into it.

To eliminate the negative effects of data issues (e.g., low 
quality of DNA samples, sample contamination and popu-
lation stratification) on GWAS, appropriate quality control 
procedures were applied on genotype data in this study. The 
PLINK v1.90b5.2 64 package (https:// www. cog- genom ics. 
org/ plink/1.9) was employed to finish the following steps, 
i.e., screening subjects based on the heterozygosity rate, the 

locus deletion rate and individual independence, respec-
tively; filtering locus based on the deletion rate of locus, the 
Hardy–Weinberg equilibrium law and the linkage disequi-
librium, respectively; correcting the population stratifica-
tion with the eigenvector matrix calculate by PCA (principal 
component analysis). Subsequently, the obtained genotype 
data were employed to conduct GWAS.

2.2.3  Base Classifiers

The base classifier was essentially based on a 2D-CNN 
model with 8 layers [30], which is shown in Fig. 3. Each 
a base classifier was composed of six convolutional layers 
(conv) and two fully connected layers (FCs). The corre-
sponding hyper-parameters are shown in [22]. The pooling 

Fig. 1  The pipeline of the proposed approach incorporating the CNN-EL-GA method into GWAS for discovering candidate genetic biomarkers 
for AD

Fig. 2  Image preprocessing 
steps

https://surfer.nmr.mgh.harvard.edu/pub/dist/freesurfer/6.0.0/freesurfer-Linuxcentos6_x86-64-stable-pub-v6.0.0.tar.gz
https://surfer.nmr.mgh.harvard.edu/pub/dist/freesurfer/6.0.0/freesurfer-Linuxcentos6_x86-64-stable-pub-v6.0.0.tar.gz
https://surfer.nmr.mgh.harvard.edu/pub/dist/freesurfer/6.0.0/freesurfer-Linuxcentos6_x86-64-stable-pub-v6.0.0.tar.gz
https://www.cog-genomics.org/plink/1.9
https://www.cog-genomics.org/plink/1.9
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operation was not involved in the first convolutional layer 
but involved in the last five convolutional layers. And nor-
malized exponential function, i.e., softmax function, was 
employed to yield the outputs of the two neurons in the last 
full connected layer between 0 and 1, which could be under-
stood as the probability estimation of the predicted class 
labels, e.g., AD and HC.

The features of 2D slices were extracted by the convo-
lutional layers in the base classifiers. In each convolutional 
layer, a set of kernels (filters) were utilized to extract specific 
features from the outputs of the previous layer.

The same parameter setting as shown in [22] was applied 
to each base classifier.

2.2.4  GA‑Based Classifier Ensemble

In this study, the predictions of multiple base classifiers were 
fused together to jointly determine the label of an unseen 
instance through ensemble learning. The process of optimiz-
ing the combination of base classifiers was further refined 
using GA and ensemble method, as shown in Algorithm 1.

In Algorithm 1, after 123 base classifiers were trained 
with the training dataset, the validation dataset was utilized 
to verify the generalization abilities of the trained base 
classifiers. Subsequently, based on the performance of the 
trained base classifiers, those with stronger generalization 
ability were selected to build the final classifier ensemble 

with the help of GA. To speed up GA convergence, 123 
base classifiers were first sorted in descending order accord-
ing to their classification accuracy on the validation dataset. 
Then, randomly initialized a population of chromosomes. A 
chromosome was a 0/1 string with the length of the number 
of the base classifiers, i.e., A gene i in a chromosome rep-
resented a base classifier. The base classifier corresponding 
to the gene i appearing to be”1″ was set as the selected, i.e., 
chrom(i) = 1, while that corresponding to the gene j appear-
ing to be “0” was set as the non-selected, i.e., chrom(j) = 0. 
At the same time, to enable the trained base classifiers with 
stronger generalization ability to be more likely selected to 
build the final classifier ensemble, we let the mutation prob-
abilities of a gene varied from the location of the gene in the 
chromosome since the base classifiers corresponding to the 
genes had been sorted in descending order in terms of their 
classification performance on the validation dataset. The 
formulas to calculate the mutation probability are as follows:

(1)mp(pos) =
pos × p

L
, 1 ≤ pos ≤ L and chrom(pos) = 1

(2)
mp(pos) =

L − pos

L
× p, 1 ≤ pos ≤ L and chrom(pos) = 0

Fig. 3  The architecture of base 
classifiers utilized in the CNN-
EL-GA approach
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Here, chrom represents a chromosome, L is the length 
of the chromosome, and pos is the position (i.e., sequence 
number) of the gene to be flipped in the chromosome. 
chrom(pos) is the value of the gene on the position pos in 
the chromosome (i.e., the gene pos), and the value “1” or “0” 
indicates the base classifier corresponding to the gene pos 
is or is NOT selected, respectively. mp(pos) is the mutation 
probability of the gene pos. p is the initial rate of the GA 
mutation probability, the mutation probability used in the 
GA optimization process is mp, instead of the initial muta-
tion rate p.

Algorithm 2 was utilized for calculating the fitness value 
of a chromosome. In detail, the classification results from 
the selected base classifiers, i.e., those corresponding to the 
genes with value of 1 in a chromosome, were finally inte-
grated to obtain the classification result of the chromosome, 
which was used as the fitness value of the chromosome. The 
optimization goal was to maximize the fitness value of a 
chromosome. With the operations of selection, crossover 
and mutation, etc., an optimal chromosome individual might 
be obtained. Accordingly, we could adaptively obtain the 
optimal combination of base classifiers and the final clas-
sification results on testing dataset might be achieved.

2.2.5  Genome‑Wide Association Studies

Here, the purpose of GWAS is to identify SNPs statistically 
significantly contributing to differences in gray matter vol-
umes of the identified discriminative brain regions for AD. 
Aiming to estimate if or not the correlation of a SNP with 
the gray matter volumes of a specific brain region is statisti-
cally significant, two hypotheses against each other, i.e., H0 
and H1, need to be tested on our collected data. In the H0 

hypothesis, a model indicating that the SNP does not have 
impact on the phenotype [31] is assumed.

The H0 hypothesis assumes only the population mean 
µ and the environment e affect the phenotype y. If the col-
lected data do not exhibit otherwise, the H0 hypothesis is 
suggested to be true.

As shown in formula 3, a model specifying that the SNP 
is significantly correlated with the phenotype is assumed in 
the H1 hypothesis.

Here, the column vector y represents the gray matter vol-
umes of a specific brain region of all of the subjects in the 
dataset; Xk and e are a column containing the genotypes 
for the k − th variant in all the subjects and a random vec-
tor containing the environments, respectively. 1 is a column 
vector of 1 s. βk denotes the effect of the k − th variant on 
the gray matter volumes of a specific brain region, and µ is 
the model mean.

(3)y = �1 + �kXk + e

Fig. 4  The discriminative brain regions ranked by the number of the points of intersection located in them

Table 3  Comparison of experimental results

Experiment Method ACC AUC MCC

AD vs.HC PCA + SVM [26] 0.76 ± 0.11 – –
CNN-EL 0.80 ± 0.05 0.90 ± 0.03 0.61 ± 0.10
CNN-EL-GA 0.86 ± 0.05 0.92 ± 0.04 0.72 ± 0.10

MCIc 
vs.HC

PCA + SVM [26] 0.72 ± 0.12 – –
CNN-EL 0.79 ± 0.04 0.80 ± 0.06 0.49 ± 0.11
CNN-EL-GA 0.80 ± 0.03 0.82 ± 0.04 0.53 ± 0.09

MCIc 
vs.MCInc

PCA + SVM [26] 0.66 ± 0.16 – –
CNN-EL 0.64 ± 0.04 0.65 ± 0.07 0.11 ± 0.12
CNN-EL-GA 0.66 ± 0.04 0.61 ± 0.06 0.21 ± 0.04



 Interdisciplinary Sciences: Computational Life Sciences

1 3

In the H1 hypothesis, besides the population mean µ and 
environment e, the genotype x has an influence on the phe-
notypes y as well. That is, presence of the SNP indicates a 
subject is prone to having the trait. In formula 3, β is utilized 
to quantitatively measure the impact of the SNP on the gray 
matter volumes of a specific brain region. If the collected 
data fit formula 3 beyond a specific threshold, the SNP is 
assumed to be significantly correlated with the gray matter 
volumes of a specific brain region.

In GWAS, when the involved phenotype is a qualita-
tive trait, the logistic regression model is usually utilized. 
Meanwhile, when the phenotype is a quantitative trait, the 
ordinary linear regression model is often employed. Here, 
the involved phenotype was the gray matter volumes of the 
identified discriminative brain regions, which is a quantita-
tive trait. Thus, the ordinary linear regression model was 
used in this study.

In each of the three binary classification tasks, the slices 
corresponding to the trained base classifiers in the opti-
mal combination were supposed as those with the strong-
est discriminability for AD identification. Therefore, we 

determined the points of intersection with the above-men-
tioned discriminative slices involved in the optimal combi-
nation. And then, these points were mapped into the standard 
MNI (Montreal Neurological Institute) space. In this way, 
the number of the points of intersection acted as an indicator 
to measure the AD discriminability for a brain region where 
the points were located. Here, with the help of the Brain-
netome Atlas, the brain regions with more points of inter-
section were considered as those more contributing to AD 
identification. Next, the top ten brain regions with the ten 
most points of intersection were selected and their gray mat-
ter volumes were calculated with FreeSurfer. The procedure 
for calculating the numbers of the points of intersection is 
exhibited in Fig. 4. The obtained gray matter volumes were 
acted as phenotypic data of subsequent GWAS experiments.

Fig. 5  Numbers of points of 
intersection located in the dis-
criminative brain regions
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3  Experiment Results

3.1  Classification Results

A total of 736 3D MRI images of 736 subjects from the 
ADNI database were divided into the training and testing 
datasets (n = 458; Table 1), which were utilized to train base 
classifiers and evaluate the effectiveness of the final classi-
fier ensemble based on three-axis slices, and a validation 
dataset (n = 278; Table 2) which was employed to examine 
and optimize the combination of base classifiers. The strati-
fied fivefold cross-validation procedure was strictly followed 
in the training and testing stages for each binary classifi-
cation task, i.e., AD vs. HC, MCIc vs. HC and MCIc vs. 
MCInc. Any image in the training/testing dataset was NOT 
utilized to optimize the combination of trained base clas-
sifiers so as to avoid potential data leakage in all of binary 
classification tasks.

The number of epoch was set as 30 for training each CNN 
base classifier. All convolutional layer activation functions 
of all the base classifiers were LReLU [32], and Adam [33] 
was used for gradient update algorithm. The batch size and 
the learning rate were set to 200 and 0.0001, respectively. 
The chromosome population size of genetic algorithm, i.e., 
m, was 30, and the initial values of crossover probability Cp 
and mutation probability p were set to 0.75 and 0.05, respec-
tively. The maximum number of iterations was set as 10,000.

The experimental results obtained with the proposed 
CNN-EL-GA approach were compared with those achieved 
with the method based on PCA and SVM, i.e., PCA + SVM 
[26], which was shown in Table 3. The classification accu-
racy of each binary classification task, i.e., AD vs. NC, 
MCIc vs. NC and MCIc vs. MCInc, on the testing dataset 
was 86%, 80% and 66%, respectively. It showed that aver-
age classification accuracies for AD vs. HC and MCIc vs. 
HC achieved with the proposed CNN-EL-GA were obvi-
ously higher than those obtained with the method based on 
PCA + SVM, while the average classification accuracy for 
MCIc vs. MCInc was not obviously higher though the stand-
ard deviation was substantially lower. As for the reason why 
the classification accuracy for MCIc vs. MCInc task was 
relatively low, we supposed that the proposed method in a 
data-driven way usually demanded more training data and 
was negatively affected by the insufficient training samples 
to a great extent in the MCIc vs. MCInc task. To clearly 
exhibit the effectiveness of GA in promoting the classifica-
tion results, the advocated CNN-EL-GA with its non-GA-
based version, i.e., CNN-EL [34]. The comparison results 
given in Table 3 showed that GA played an important role in 
significantly improving the performance of the classification.

3.2  Phenotypic Data

To conduct GWAS experiments, the phenotypic data need to 
be prepared in advance. Here, each an MRI slice was inde-
pendently employed to build a single-slice base classifier. 
In this way, while the most discriminative single-slice base 
classifiers were selected on the validation dataset with GA in 
each of three binary classification tasks, the corresponding 
sagittal, coronal, and transverse slices were determined at 
the same time and supposed to be the most AD discrimina-
tive among all the slices. Thus, the points of intersections of 
the determined coronal, sagittal, and transverse slices were 
mapped onto the brain regions using Brainnetome Atlas. 
Because the resulting points of intersection were located on 
the most AD discriminative coronal, sagittal, and transverse 
slices simultaneously, we cannot deny that the number of the 
points of intersection located in a brain region was capable 
of acting as an indicator to evaluate the AD discriminability 
for the brain region. The brain regions with the most points 
of intersection were considered as the most discriminative 
among all the brain regions. In addition, it is notable that 
some points of intersection appeared in the unlabeled brain 
regions in the Brainnetome Atlas.

We ranked the brain regions in descending order on the 
basis of the number of points of intersection located in them, 
as exhibited in Fig. 5. In the figure, values on the horizon-
tal axis denote the total number of points of intersection in 
each a discriminative brain region, which were obtained with 
stratified five-fold cross-validation procedure for all of three 
binary classification tasks. That is, for each a brain region, 
all the intersection points in the brain region obtained with 
stratified five-fold cross-validation method in all the three 
binary classification tasks were summed up in each of brain 
regions. And then, the brain regions could be ranked by the 
number of the intersection points located in them. Those val-
ues on the vertical axis denote the brain region labels. The 
two prefix capital letters, i.e., “L” or “R” of a brain region 
label (e.g., L.rHipp and R.mAmyg) represent the left or the 
right cerebral hemisphere, respectively.

Thus, the top ten most discriminative brain regions 
(i.e., R.rHipp, R.mAmyg, L.rHipp, R.36c, R.TL, R.lAmyg, 
R.cHipp, R.TH, L.36c, L.A22r) shown in Fig. 5 were con-
sidered as those most significantly correlated with AD detec-
tion. The gray matter volume values of the ten brain regions 
from 458 subjects were acquired with FreeSurfer and served 
as the phenotypic data in the following GWAS analysis.

3.3  GWAS Results

We conducted ten GWAS on ten brain morphological traits, 
i.e., gray matter volumes of the top ten brain regions, respec-
tively. In the experiments, the statistical significance (i.e., p 
value) of the associations between each SNP and each of ten 
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traits was assessed by an ordinary linear regression model 
using PLINK. And then, according to the obtained p-values, 
Manhattan plots were drawn (See Figs. 1, 2, 3, 4, 5, 6, 7, 8, 
9, 10 in Appendix) to visually display the SNPs with the 
most significant correlation with the traits. In the figures, 
values on the vertical axis represent the negative logarithm 
of p values. A genome-wide significance p value threshold 
was set a priori at 1 ×  10−5. Chromosome 23, 24, 25 and 26 
actually indicate the X chromosome, the Y chromosome, 
the pseudo-autosomal region of X, Y chromosomes, and 
the mitochondrial region, respectively. Plus, for the sake 
of simplicity, the points with the negative logarithms of p 
values which are higher than 8 are located on the line with 
the negative logarithms of p values which are the same as 8.

After querying the SNPs identified as most highly corre-
lated with the gray matter volumes of the ten brain regions in 
the ten GWAS experiments through the website https:// www. 
ncbi. nlm. nih. gov/ snp, we have obtained detailed information 
on those SNPs (See Table 1 in Appendix). Seven SNPs (i.e., 
rs36088804, rs2578907, rs2556924, rs2563370, rs34045151, 
rs2578811 and rs2522623) located in the gene Protocad-
herin 11 X-linked (PCDH11X) were found to statistically 
significantly occur 26 times in total in the ten GWAS exper-
iments. Meanwhile, we found that the SNP (rs34640393) 
located in the gene protocadherin 11 Y-linked (PCDH11Y), 
a gene unique to Homo males that encodes Protocadherin 
11Y, statistically significantly appeared in four of ten GWAS 
experiments. In [35], genetic variation in PCDH11X was 
suggested to be associated with late-onset AD (LOAD), the 
only GWAS signal on the X chromosome currently. How-
ever, [36] indicated independent replication of this finding 
had not been consistent. In fact, [37] pointed out that the 
PCDH11X/Y genes were a cell surface receptor molecule 
belonging to the protocadherin gene, a subfamily of the cad-
herin superfamily. Similar to other cadherins, it was cleaved 
by γ-secretase and mediated cell–cell adhesion. Cadherins 
formed the complex together with PS1/γ-secretase and regu-
lated cell–cell interaction after the cleavage by γ-secretase. 
Familial AD mutations in PS1 inhibited this process. Thus, 
PCDH11X/Y were considered to take part in cell signaling 
which was very important in the growth of the central nerv-
ous system [35].

Kantojarvi [38] advocated that PCDH11X/Y were located 
in a human XY homology region on Xq21.31 in loci where 
two SNPs (rs5941380 and rs35429716) were exhibited to be 
significant correlation with autism. Plus, it’s found that the 
SNP (rs2451078) located in the gene TPTE2 was strongly 
statistically significant, which occurred in five of ten GWAS 
experiments. That indicated that the SNP was closely related 
to the gray matter volumes of these brain regions and might 
be a candidate AD genetic biomarker. [39] revealed that the 
SNP (rs2451078), discovered in the CIDR/Pankratz et al. 
2009 dataset [40], had reached genome-wide significance 

(p value < 1.94 ×  10−10), though it was not reproduced in 
another dataset, e.g., the Ashkenazi Jewish [39]. Further-
more, it was found that the SNP (rs2451078) allegedly 
located on autosomes exhibited significant difference in 
genotype frequencies between men and women [41]. Plus, 
rs17016520 and rs10496214, which are located in the gene 
LOC107985902, exhibited statistical significance twice in 
the ten GWAS experiments, respectively. That means they 
could be worthwhile for further investigation. Moreover, 
in [42], rs10496214 was found to be one of schizophrenia 
SNPs significantly associated and concordant in both the 
Munich and Aberdeen Collections. It seemed that the SNP 
rs17016520 has not been yet further studied so far. Moreo-
ver, nine variants (i.e., rs2591590, rs2591591, rs2591593, 
rs1862462, rs2591597, rs1867691, rs2547072, rs2591594 
and rs2547076) located in the MUC16 gene were discovered 
to be statistically significantly associated with the gray mat-
ter volumes of the ten brain regions. Staley [43] indicated 
that MUC16 was shown to form a protective mucous barrier 
on the apical surfaces of the epithelia and it was associated 
with the following disorders: ovarian cancer, endometriosis, 
pseudo-meigs syndrome, serous cystadenocarcinoma and 
bronchogenic cyst. In addition, we found that three variants, 
i.e., rs4543320, rs9352767 and rs6903123, located in the 
LINC01621 gene was of statistical significance in ten GWAS 
experiments. To sum up, six genes of PCDH11X/Y, TPTE2, 
LOC107985902, MUC16 and LINC01621 and the variants, 
such as rs36088804, rs34640393, rs2451078, rs10496214, 
rs17016520, rs2591597, rs9352767 and rs5941380 etc., 
were discovered as the potential genetic biomarkers for AD, 
which would be interesting for follow-up studies.

4  Discussion

In this study, we advocated an adaptive classifier ensemble 
model combining CNN and EL with GA to distinguish AD 
or MCIc from HC, and MCIc from MCInc. Meanwhile, the 
ten most discriminative brain regions were identified and 
their gray matter volumes were obtained. Based on these, 
GWAS experiments were conducted to explore the candidate 
genetic biomarkers for AD.

With the proposed model, we obtained average classi-
fication performance (i.e., accuracy ± standard deviation) 
of 0.86 ± 0.05, 0.80 ± 0.03, and 0.66 ± 0.04 for AD vs. HC, 
MCIc vs. HC, and MCIc vs. MCInc, respectively. Compared 
with a PCA + SVM method [26], the advocated method 
could automatically learn the discriminative representa-
tions from the MRI images to further enhance the robust-
ness and generalization of the acquired model. Meanwhile, 
in comparison with the CNN-EL method [22], the proposed 
method introduced GA as the optimization strategy to adap-
tively select the base classifiers globally in a data-driven 

https://www.ncbi.nlm.nih.gov/snp
https://www.ncbi.nlm.nih.gov/snp
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way, which was more objective and less dependent on prior 
knowledge and hyper-parameters. The comparison results 
showed that accuracies achieved with the CNN-EL-GA were 
better than those obtained with the CNN-EL method [22] for 
all the three binary classification tasks.

Furthermore, when experimental results (e.g., the identi-
fied discriminative brain regions, SNPs and genes) in this 
study were compared with those in [34], it is notable that the 
results in the this study and [34] were similar to some extent 
though the datasets and the approach utilized in [34] were 
different from those in this study and any SNPs in the X and 
Y chromosomes, the pseudo-autosomal region (XY), and 
mitochondrial region (that is, only SNPs in Chromosomes 
1–22 were analyzed) were excluded for all analyses in [34]. 
In detail, the subjects involved in the datasets utilized to 
locate the discriminative brain regions were NOT the same 
as those involved in the datasets subsequently employed to 
conduct the GWAS experiments in [34]. Also, the CNN-
EL approach, rather than the CNN-EL-GA, was employed 
to discern the most discriminative brain regions to classify 
AD in [34].

Actually, in comparison of those in [34], the observed 
similarity in the experimental results in this study exhib-
ited the robustness and effectiveness of the CNN-EL-GA 
approach proposed here to some degree. After all, the data-
sets utilized in this study and [34] were NOT the same since 
the subjects involved in the datasets utilized to identify the 
discriminative brain regions were forced to be the same as 
those involved in the datasets subsequently employed to con-
duct the GWAS experiments in this study. And the experi-
mental results have indicated that the generalization ability 
of the classifier ensemble achieved with CNN-EL-GA pro-
posed here was substantially better than that of the ensemble 
obtained with CNN-EL.

As a matter of fact, in [44] and [45], new technical frame-
works have been proposed to identify AD patients and dis-
cover some brain regions and genes associated with AD 
significantly. The focus in these two papers is multimodal 
data fusion. However, in this paper, the goal is to discover 
the genetic biomarkers based on the framework of Genome-
Wide Association Studies (GWAS), which has been widely 
accepted to identify disease genes by examining the relation-
ship between each SNP and phenotype traits. As for pheno-
type traits in GWAS, generally speaking, it is better to select 
the quantitative phenotype, which is related to the disease 
and is easy and accurate to measure. To obtain more suit-
able quantitative phenotype traits, we proposed the CNN-
EL-GA method to determine the most discriminative brain 
regions in a data-driven manner while the obtained ensemble 
model exhibited the best generalization performance on the 
testing dataset. And then, the gray matter volumes of these 
determined brain regions acted as the quantitative phenotype 

traits in the GWAS experiments to help identify candidate 
neuroimaging biomarkers for brain diseases.

All in all, the major contributions of this study were as 
follows.

1. To reduce the negative impact of subjective factors and 
to restrict the dependence on prior knowledge, GA was 
utilized to adaptively select the optimal combination 
of the base classifiers trained using coronal, sagittal 
or transverse slices in a data-driven way to build the 
ensemble model in the presented CNN-EL-GA approach 
and resulting, a better classification performance was 
further achieved.

2. With the help of the advanced CNN-EL-GA approach, 
the most discriminative coronal, sagittal and trans-
verse slices in all three binary classification tasks, 
respectively, determined the points of intersection. 
And then, using the Brainnetome Atlas, these points 
were mapped to the brain regions. For a brain region, 
the sum of all the numbers of the points of intersection 
located in the brain region obtained with the five-fold 
cross-validation method in the three binary classifica-
tion tasks were calculated to measure its capability of 
aiding the diagnosis of AD. Gray matter volumes of 
the selected brain regions were calculated and sorted to 
facilitate identifying the SNPs and genes correlated to 
the traits as candidate genetic biomarkers for AD with 
GWAS. According to the analysis of ten GWAS experi-
mental results, six genes, i.e., PCDH11X/Y, TPTE2, 
LOC107985902, MUC16 and LINC01621, and the 
variants, e.g., rs36088804, rs34640393, rs2451078, 
rs10496214, rs17016520, rs2591597, rs9352767 and 
rs5941380, were obtained. In addition, studies have 
shown that the PCDH11X/Y genes were AD suscepti-
bility genes [35] and strong associated with autism [38] 
and that the SNPs, i.e., rs2451078 and rs10496214, had 
significant relationships with Parkinson’s disease [39] 
and schizophrenia [42], respectively.

3. The method proposed in this study might also be use-
ful for identifying candidate neuroimaging and genetic 
biomarkers for other brain disorders, e.g., autism, Par-
kinson’s disease, severe depression and schizophrenia, 
especially for other little-investigated brain diseases, in 
a data-driven manner. The methods could effectively 
help focus on those biomarkers that are most likely to 
be informative, and might be expected to facilitate the 
research progress of the brain disorders. In the future 
research, the generalizability of the proposed method 
on other brain disorders and the clinical implications of 
the obtained findings will be further investigated.

In this study, gray matter volume values of the most dis-
criminative brain regions acted as the phenotype data in the 
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GWAS experiments. A natural question is whether or not 
there is any morphological parameter which is more suitable 
to be the phenotypic data in the GWAS experiments than 
the gray matter volume value. It might be worthy of being 
investigated in the future research.

5  Conclusion

In conclusion, to help discover more effective AD biomark-
ers in a data-driven manner, we advanced an adaptive clas-
sifier ensemble model, i.e., CNN-EL-GA, to distinguish the 
subjects with MCI or AD in the three binary classification 
tasks using sMRI. In each binary classification task, a lot 
of base classifiers were built utilizing coronal, sagittal, or 
transverse MRI slices, and those with strong discriminabil-
ity were then selected and ensembled with GA. The results 
showed an accuracy rate of 0.86 for AD vs. HC, 0.80 for 
MCIc vs. HC, and 0.66 for MCIc vs. MCInc. When the 
generalization capability of the acquired classifier ensem-
ble was maximized, the slices corresponding to the selected 
built base classifiers in the acquired classifier ensemble were 
thought to be those with the strongest capabilities to iden-
tify AD. Thus, the points of intersection were determined 
with the most discriminative coronal, sagittal, and transverse 
slices. The gray matter volumes of the top ten discriminative 
brain regions, which contained the most intersection points, 
were employed to conduct GWAS together with the genotype 
data. In the experimental results, six genes of PCDH11X/Y, 
TPTE2, LOC107985902, MUC16 and LINC01621 and 
the SNPs including rs36088804, rs34640393, rs2451078, 
rs10496214, rs17016520, rs2591597, rs9352767 and 
rs5941380 were identified. They could act as candidate 
genetic biomarkers for AD. Through comparing the results 
with the previously reported findings, we could see that this 
approach might overcome the limitations associated with 
subjective factors and the dependence on prior knowledge 
while adaptively achieving more robust and effective can-
didate biomarkers in a data-driven manner. The approach 
is promising to improve the discovery of effective genetic 
biomarkers for brain disorders, as well as to help improve the 
effectiveness of identified candidate neuroimaging biomark-
ers for brain diseases.
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